电子对焦成像系统——eTFMS3
系统构成:
LED (465 nm)光源、显微镜驱动器、自聚焦显微镜、成像套管、换向器、显微镜架、虚拟显微镜、软件、电缆套件等。
主要特征:
1)电子调焦:软件控制的自动调焦,无需手动调节,视野范围更加稳定
2)最新一代的设计,较少的荧光激发光,减少光漂白和光毒性
3)连接简单:显微镜主体通过旋转连接到成像套管, 无需任何工具。
4)自由移动:标配Doric独有的高品质换向器设备,可在各种行为操作箱、迷宫、旷场中移动。
5)单细胞分辨率下,可同时捕获1000+神经元活动
6)长时间跟踪细胞,追踪时间可长达数月
7)散热快:外接式光源,不存在摄像头散热发烫损伤动物
8)模块化设计,便于携带和维修
结合光遗传的电子对焦成像系统——eTOSMS3
电子对焦+钙离子成像+光遗传一体化系统
系统构成:
LISER™ + LED (470nm) 光源和驱动器、电子对焦显微镜、成像套管、换向器、显微镜架、虚拟显微镜、软件、电缆套件等
主要特征:
1)Ca2+成像和光刺激(激发/抑制)可同步进行
2)钙离子探针+光遗传视蛋白
3)生物干扰最小化,信噪比最大化
4)同步跟踪和行为学分析
头戴双色微型荧光显微镜系统——2CMS
微型荧光双色显微镜提供了在自由行为动物上可视化大规模神经环路动力学的端到端的解决方案。双色荧光显微镜主体结合了两个 CMOS 传感器,可同时对两种不同的荧光团进行成像。可同时记录红色(如:RFP)和绿色(如:GFP) 荧光标记。与单色微型荧光显微镜体不同的是,双色显微镜体针对特定的成像深度进行了优化,成像深度可达 5.9 毫米的大脑区域。
系统构成:
YAG + LED (465 nm) 光源、显微镜驱动器、双色荧光显微镜 、成像套管、换向器、显微镜支架、虚拟显微镜、软件、电缆套件等。
部分已发表文献:
1. S. Malvaut et al. Live imaging of adult neural stem cells in freely behaving mice using mini-endoscopes Star Protocols, (2021). |
2. B.T. Lain et al. Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits. Journal of Neuroscience Methods, (2021). |
3. J.N. Siemian. An excitatory lateral hypothalamic circuit orchestrating pain behaviors in mice. eLife (2021) Brain region: Lateral Hypothalamus (LH) |
4. A. Gengatharan et al. Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. Cell 184, 709–722 (2021). |
5. F. Fredes et al. Ventro-dorsal Hippocampal Pathway Gates Novelty-Induced Contextual Memory Formation. Current Biology 31, 25–38.e5 (2021) Brain region: Ventral hilus; dorsal dentate gyrus |
6. D. Rossier et al. A neural circuit for competing approach and defense underlying prey capture. PNAS (2021) Brain region: Lateral Hypothalamus (LHA) |
7. A. Glas et al. Spaced training enhances memory and prefrontal ensemble stability in mice. bioRXiv (2020) Brain region: dorsomedial prefrontal cortex (dmPFC) |
8. P. Krzywkowski et al. Dynamic encoding of social threat and spatial context in the hypothalamus. eLife 9, e57148 (2020) Brain region: Hypothalamus (VMHvl) |
9. C. Prévost-Solié et al. Superior Colliculus to VTA pathway controls orienting behavior during conspecific interaction. bioRXiv (2019) Brain region: Superior Colliculus (SC) |
10. A. Glas et al. Benchmarking miniaturized microscopy against two-photon calcium imaging using single-cell orientation tuning in mouse visual cortex Plos One (2019) Brain region: visual cortex (V1) |
11. J.M. Patel et al. Sensory perception drives food avoidance through excitatory basal forebrain circuits. eLife 8, e44548 (2019) Brain region: basal forebrain (BF) |
12. Fu et al. SatB2-Expressing Neurons in the Parabrachial Nucleus Encode Sweet Taste Cell reports 27 , 1650-1656 (2019) Brain region: parabrachial nucleus (PBN) |
13. B. Roberts et al. Ensemble encoding of action speed by striatal fast-spiking interneurons Brain structure and function (2019) Brain region: dorsal striatum (DS) |
14. S. Shin et al. Drd3 Signalling in the Lateral Septum Mediates Early Life Stress-Induced Social Dysfunction Neuron 97, 195–208 (2018) Brain region: lateral septum (LS) |
15. E. Gallo et al. Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum. Nature Communication 9, 1086 (2018) Brain region: nucleus accumbens (NAc) |
16. D.A. Evans et al. A synaptic threshold mechanism for computing escape decisions Nature 558 , 590–594 (2018) Brain region: dorsal periaqueductal gray (dPAG); medial superior colliculus(mSC) |
17. T.C. Francis et al., Molecular basis of dendritic atrophy and activity in stress susceptibility. Molecular psychiatry 22, 1512–1519(2017) Brain region: nucleus accumbens (NAc) |